
Reply to the Reviewers
Re: Manuscript ID Sensors-85869-2025

“DSOSplat: Monocular 3D Gaussian SLAM with Direct Tracking”
Yi Zhou, Zhetao Guo, Dong Li, Runwei Guan, Yuxiang Ren, Hongyu Wang and Mingrui Li

IEEE Sensors Journal

Overview

On behalf of my co-authors, we thank you very much for allowing us to revise our manuscript ”DSOSplat:
Monocular 3D Gaussian SLAM with Direct Tracking” (Manuscript ID: sensors-85869-2025). We appreciate
the editor and reviewers very much for acknowledging the innovative and technical quality of our work and
for the positive and constructive feedback. In the revised version, we have addressed the concerns of the
reviewers. The revision was marked in red fronts in the manuscript.

1. Clarification of System Application Scenarios and Positioning We clarified that the pro-
posed monocular dense SLAM system is particularly advantageous for indoor applications such as
AR/VR and human-computer interaction. Meanwhile, the system also demonstrates good general-
ization capabilities in outdoor scenarios. We further elaborated on its strengths in robustness, scale
awareness, reconstruction accuracy, and computational efficiency. Related content has been added to
Section IV.A.

2. Justification for Baseline Method Selection We provided the rationale behind selecting ESLAM,
RTG-SLAM, and Loopy-SLAM as baseline methods. These approaches represent state-of-the-art tech-
niques in neural radiance fields and 3D Gaussian Splatting-based SLAM. RTG-SLAM and Loopy-
SLAM, being RGB-D systems with loop closure, emphasize the competitiveness and generalization of
our method. Explanations were added to Section IV.A.

3. Motivation and Necessity of the SC-AMVS Module We thoroughly explained the motivation
behind introducing the SC-AMVS module, which integrates Depth Anything V2’s scale prior with
multi-view geometric consistency to improve the continuity and precision of depth estimation. We
also added ablation studies comparing SC-AMVS with DAV2-only and AMVS-only configurations to
validate its effectiveness. Relevant discussion appears in Section III.A.

4. Clarification of Key Technical Details and Reference Additions We refined the technical
descriptions of feature volume construction, the 3D convolutional network architecture, and the role of
the learned weighting matrix. Moreover, we added the previously missing citations to strengthen the
completeness and clarity of the methodology. These updates were applied in Sections III.A, III.B,
and IV.E.

5. Standardized Terminology and Model Definitions We formally defined core concepts such as
“Gaussian points,” “uniform/multiple motion models,” and “initial keyframe selection.” These clari-
fications resolve potential ambiguities in the original manuscript and were added to Sections III.C,
III.D, and related parts.

6. Discussion of Limitations and Future Extensions We expanded the conclusion with a detailed
discussion of the system’s limitations and potential extensions, including support for multi-robot col-
laborative mapping and multi-modal sensor fusion. This enhances the openness and forward-looking
perspective of the manuscript. The discussion was added to Section IV.H.
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Review 1

Q1. For benchmarking, the authors use Replica and ScanNet datasets, which are well-known as indoor
scenarios. Further, a self-collected outdoor data is also collected. The question is, for which applications is
the proposed method better suited? Why? If the indoor application is perferred, the authors should explain
which specific features of the proposed system make this kind of application more suited.

We sincerely thank the reviewer for the valuable comments. Our proposed method primarily targets
dense mapping and high-precision localization tasks based on monocular sensors, and demonstrates cer-
tain advantages across various scenarios (both indoor and outdoor). Specifically, compared to conventional
monocular SLAM systems, our method exhibits the following four key features:

1. Robust tracking module We adopt DSO as the pose estimation module in our system. Compared
to feature-based methods, DSO exhibits higher stability under conditions of low texture, illumination
changes, and slight occlusions, which facilitates practical deployment.

2. End-to-end dense mapping pipeline By integrating our proposed SC-AMVS module with 3DGS,
the system achieves a full pipeline optimization from image input to dense model output, making it
well-suited for tasks requiring high-quality geometric reconstruction.

3. Ease of multi-sensor fusion Since DSO is a direct method that models image intensity values, it
naturally offers continuity and differentiability. This property makes it easier to integrate with other
sensors (e.g., IMU, depth cameras) under monocular settings for joint optimization.

4. Low computational requirements Compared to NeRF-based approaches, our method employs
Gaussian-based representation and rendering, resulting in higher runtime efficiency. This makes it
more suitable for deployment on resource-constrained platforms such as mobile devices or robots.

Our system is particularly well-suited for applications such as AR, VR, and human-computer interaction
in indoor environments. The proposed SC-AMVS module, combined with DAV2 for scale calibration, en-
ables the generation of dense depth maps with real-world scale under purely monocular input, significantly
enhancing the precision and fidelity of indoor reconstruction. Leveraging the detailed modeling capability of
3DGS, our system outperforms traditional sparse or mesh-based representations in both texture continuity
and geometric accuracy, making it ideal for high-frequency interactive tasks in indoor scenarios. Further-
more, the system operates without the need for additional post-processing or lengthy optimization, providing
strong real-time performance to meet the latency-sensitive requirements of AR/VR applications.

Although our method is primarily designed for indoor scenarios, it also demonstrates a certain level of
adaptability to outdoor environments, especially when compared with traditional sparse SLAM systems. It
is capable of producing dense reconstructions with structural continuity and high semantic fidelity, offering
a stronger foundation for tasks such as path planning and object recognition. Additionally, our multi-view
dense estimation preserves geometric consistency even without auxiliary sensor inputs, thereby enhancing
its practicality in natural outdoor environments.

In summary, we believe that our system offers great advantages in indoor AR, VR, and human-computer
interaction applications, while also exhibiting good extensibility to complex outdoor environments or col-
laborative operation with multimodal sensor systems. We have incorporated the relevant discussions into
Section IV.H of the manuscript. We thank the reviewer for their insightful feedback and attention to our
work.

Q2. The authors should explain why they choose ESLAM, RTG-SLAM and Loppy-SLAM as Bench-
marks. Are there any specific reasons?
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We thank the reviewer for raising this constructive question. The lack of sufficient explanation regarding
the selection of baseline methods may indeed lead to confusion among readers. In the revised manuscript,
we have provided a more detailed clarification:

ESLAM, RTG-SLAM, and Loopy-SLAM represent the state-of-the-art methods corresponding to radiance
field-based and 3D Gaussian Splatting (3DGS)-based SLAM approaches. Notably, both RTG-SLAM and
Loopy-SLAM are RGB-D systems equipped with loop closure capabilities, which further highlights the
competitiveness and generalizability of our monocular-based method.

We have incorporated and revised the relevant discussion in Section IV.A of the manuscript. We thank
the reviewer for helping us improve the rigor and clarity of the manuscript.

Review 2

Q1. Depth Calibration Ablation Study: The manuscript proposes an adaptive multi-view depth estimation
module (SC-AMVS) that leverages depth calibration based on depth maps provided by DAV2. However, the
motivation for estimating depth using SC-AMVS is unclear, given that DAV2 appears to provide accurate
absolute depth information directly as stated ”Leveraging the real depth information provided by Depth Any-
thing V2”. Please discuss it clearly. An additional ablation study comparing the proposed SC-AMVS method
against a baseline directly using the DAV2 depth maps would significantly clarify the necessity and benefit of
employing SC-AMVS. Such a study would elucidate whether SC-AMVS contributes meaningful improvements
beyond the raw DAV2 depth data.

We thank the reviewer for the thorough review of our work and for pointing out this important issue.
We understand the reviewer’s concern regarding the motivation for introducing the SC-AMVS module, par-
ticularly given that we already use Depth Anything V2 (DAV2) to provide scale-aware depth as a reference.
We have addressed this concern explicitly in the revised manuscript.

Although DAV2 is capable of generating depth estimates with absolute scale from monocular images, it
remains fundamentally a single-image-based depth prediction network. As such, it exhibits several limitations
when applied to continuous frames or multi-view scenarios. Since DAV2 performs inference on individual
images independently, it ignores inter-frame geometric relationships, which often leads to inconsistent depth
predictions in scenes with complex geometry or occlusions. Despite producing depth maps with absolute
scale, the predictions may still suffer from scale bias when encountering scene variations (e.g., indoor vs.
outdoor environments, lighting changes), due to its reliance on image-level priors. In particular, DAV2 can
produce local depth discontinuities across adjacent frames, which adversely affects the stability of downstream
fusion and tracking processes.

To address these limitations, we introduce the SC-AMVS module. The core motivation lies in integrating
multi-view geometric consistency with DAV2’s absolute scale information to achieve high-accuracy, real-scale
dense depth estimation. By constructing an adaptive cost volume and incorporating multi-scale feature
aggregation, our approach provides superior spatial consistency compared to single-frame predictors. DAV2
is employed as an external source of scale supervision, forming a depth-scale calibration term that effectively
compensates for the scale ambiguity commonly encountered in traditional multi-view depth estimation.
Notably, the module does not require ground-truth depth for training and can be trained on synthetic data
while still generalizing well to complex real-world scenarios, demonstrating its practicality and effectiveness
as an intermediate depth fusion module.

Therefore, we argue that SC-AMVS does not merely replicate DAV2’s functionality. Instead, through
a complementary design, it achieves an organic integration of multi-view geometric constraints and single-
image depth priors, yielding significant improvements in both tracking robustness and mapping accuracy.
We have added a detailed discussion of the motivation and ablation experiments (including comparisons
using DAV2 only, AMVS only, and the combined approach) in Section III.A of the manuscript to support
this viewpoint. We thank the reviewer for raising this critical question, which has helped us further refine
the theoretical coherence and methodological logic of our work.
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Q2. Citations and References: Several important algorithmic steps lack proper citations. Please provide
clear citations or references for key technical approaches, especially in Section III.A and Section III.B, to
ground your work clearly within existing research.

Thank you for the reviewer’s suggestions. The reason the Section III.A (SC-AMVS) and Section III.B
(Visual Odometry) lacked proper citations is that we had previously referenced related papers but did not
cite them in those sections. Here, we have rechecked Section III.A and Section III.B, added the relevant
citations and highlighted them in red in the text. The references are listed below.1,2

Q3. Feature Volume Vσk
: Clarify explicitly how the feature volume is obtained and what specific trans-

formations or operations are involved.

We thank the reviewer for their attention to our work and for the valuable suggestions. In accordance
with the comments, we have provided a more detailed and explicit description of the generation process of
V σ
k in the revised manuscript.
The generation of V σ

k involves multi-scale feature extraction and depth-hypothesis-based geometric trans-
formation. Specifically, each keyframe image Ik is processed by a shared-weight convolutional network to
extract multi-scale feature maps Fσ

k ∈ RCσ×Hσ×Wσ

, where σ denotes the scale level. At each scale σ, we
construct a discrete set of depth hypotheses Dσ

hyp ∈ RLσ

, where Lσ is the number of hypothetical depth
planes. This set is designed to converge progressively across scales.

For each pixel (h,w) in the reference image, we back-project it into 3D space under each depth hypothesis
dl, and then project the resulting 3D point onto the target image Ik using the known relative camera pose Tk.
By performing bilinear interpolation at the projected locations on the feature map Fσ

k of the target image,
we obtain a feature volume V σ

k ∈ RLσ×Hσ×Wσ×Cσ

that encodes feature information from different depth
levels under the given view. This feature volume serves as the foundational input to the subsequent adaptive
cost aggregation module, thereby enhancing the accuracy and robustness of depth consistency evaluation
across multiple views.

We have incorporated and revised the relevant explanation in Section III.A of the manuscript. We thank
the reviewer for helping us improve the clarity of technical details and the overall rigor of our presentation.

Q4. 3D Convolutional Network: The description ”using a shallow 3D convolutional network to generate
a weighting matrix ” is overly vague. Please clearly define this network’s architecture, parameters, inputs,
and outputs.

We sincerely thank the reviewer for the valuable comments. We acknowledge that the original description
of the ”shallow 3D convolutional network” was not sufficiently specific, which may have hindered the reader’s
understanding of the working mechanism of this module. We have now added a detailed definition of the
network structure, parameter configuration, and input/output specifications in the revised manuscript, as
outlined below:

In our proposed SC-AMVS module, a shallow 3D convolutional network is introduced to enable adaptive
weighting across different viewpoints when constructing the cost volume. This network is used to generate the
weight matrix wσ

k , which reflects the reliability of each view under different depth hypotheses. The input to
the network is the feature volume V σ

k ∈ RLσ×Hσ×Wσ×Cσ

of keyframe Ik at scale σ, representing a collection
of feature maps under various depth hypotheses. We transpose this tensor to RCσ×Lσ×Hσ×Wσ

to conform
with the standard input format for 3D convolutions. The output is a weight matrix wσ

k ∈ RLσ×Hσ×Wσ

,
which is used to perform per-voxel adaptive weighting of contributions from different viewpoints in the cost
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volume.
We have explicitly included this architectural description and added corresponding annotations in Sec-

tion III.A of the manuscript. In future work, we also plan to explore the potential of deeper networks to
further enhance the robustness of adaptive weighting.

We thank the reviewer for the detailed review and constructive feedback that have helped us improve
the clarity and completeness of our work.

Q5. Learning Weight Matrix: There is potential ambiguity regarding whether the learned weighting ma-
trix effectively differs from uniform weighting (i.e., ). Include a brief discussion or experimental evidence
verifying that the learned weights meaningfully deviate from uniform weighting.

We thank the reviewer for raising this critical question. We acknowledge that the original manuscript did
not explicitly clarify whether the learned weight matrix wσ

k significantly deviates from uniform weighting,
which may lead to ambiguity in understanding.

To address this issue, we have included a brief verification in the revised version to demonstrate that
the learned weights indeed exhibit adaptive variability in practice and are effectively distinguished from
simple uniform averaging. Specifically, we conducted an ablation study comparing two settings: one using
the learned weights and the other using fixed uniform weights, in terms of depth estimation accuracy. The
experimental results show that the learning-based weighting scheme consistently achieves lower errors across
multiple public datasets, confirming the practical advantage of adaptive weighting.

Based on this analysis, we conclude that the learned weight matrix not only numerically deviates from a
uniform distribution but also plays a critical role in improving the overall performance of the system. The
relevant supplementary discussion has been added to Section IV.E of the manuscript. We sincerely thank
the reviewer for the thorough review and constructive guidance.

Q6. Definition and Computation of Feature Volume: Clearly describe how the feature volume is derived
from extracted image features. Explicitly detail the steps involved in generating these volumes, as it is critical
for understanding the adaptive aggregation process.

We thank the reviewer for pointing out this important issue and fully agree that it is a key component
for understanding our proposed adaptive cost aggregation process. To address this, we have clarified and
elaborated on the definition and construction procedure of V σ

k in the revised manuscript.
In our method, V σ

k refers to a four-dimensional voxel structure constructed at scale σ by spatially aligning
multi-view image features according to a set of predefined depth hypotheses.

All keyframe images Ik are first processed by a shared-weight feature extraction network to obtain scale-
specific feature maps Fσ

k ∈ RCσ×Hσ×Wσ

. At each scale σ, we define a discrete set of depth hypotheses
Dσ

hyp ∈ RLσ

that spans the depth range from near to far, which serves as the basis for the voxel dimension.
For each pixel location (h,w) in the reference frame, we back-project it into 3D space using each depth
hypothesis dl ∈ Dσ

hyp; then, using the known relative pose Tk, we project the 3D point into the target frame
Ik to compute the corresponding 2D coordinates. By performing bilinear interpolation at these locations on
the feature map Fσ

k of the target frame, we obtain the corresponding feature values.
For each keyframe Ik, this alignment and sampling process is repeated over all depth hypotheses, resulting

in a feature volume V σ
k ∈ RLσ×Hσ×Wσ×Cσ

, where Lσ is the number of depth planes, Hσ and Wσ are the
spatial dimensions, and Cσ denotes the number of feature channels. This feature volume is then passed into
the cost volume construction module, where it is combined with the learned view-dependent weight matrix
to perform adaptive cost aggregation. This approach effectively improves the stability and accuracy of depth
estimation in multi-view scenarios.

We have added the detailed explanation of these steps to Section III.A of the manuscript. We thank
the reviewer for helping us identify and refine the expression of this critical component.
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Q7. Initialization and Motion Models: The terms ”unity speed motion model” and ”multiple motion
models” are unclear. Explicitly clarify the concrete models used, and provide rationale or citations support-
ing their selection and effectiveness.

We thank the reviewer for raising this constructive question. We acknowledge that the original manuscript
presented certain conceptual ambiguities regarding the terms “unity speed motion model” and “multiple
motion models.” To improve the clarity and accuracy of our paper, we have thoroughly revised and explicitly
clarified this section in the updated manuscript:

For the Unity Speed Motion Model, we adopt a constant velocity assumption during the initial pose
estimation phase. Specifically, we infer the initial pose of the current frame by extrapolating from the motion
observed between the previous two frames. This strategy is equivalent to assuming that the current frame
follows the same velocity and direction as the preceding one along the camera trajectory.

For the Multiple Motion Models, we consider the presence of challenging conditions in real-world
scenes, such as abrupt motion changes, insufficient inter-frame parallax, or inconsistent lighting. To improve
the robustness of initial pose estimation under such conditions, we introduce several alternative motion
hypotheses, including a double-speed model, half-speed model, perturbed rotation model, and static model.
During runtime, we generate a set of candidate poses based on these motion hypotheses and evaluate each of
them using forward photometric error and convergence criteria during optimization. The motion model that
leads to the most reliable convergence is then selected as the initialization for the current frame. This multi-
model strategy significantly reduces the risk of tracking failure, especially in dynamic, blurry, low-texture,
or large-motion environments.

We have incorporated these clarifications and revisions into Section III.C of the manuscript. Addi-
tionally, we present a comparative analysis in the experimental section to demonstrate the improvement in
tracking stability brought by the introduction of the multi-model initialization strategy. We sincerely thank
the reviewer for the insightful feedback and careful attention to the details of our work, which helped enhance
the overall clarity and academic rigor of the paper.

Q8. Definition of Gaussian Points: The manuscript frequently refers to ”Gaussian points” without clear
definition. Please provide a concise yet rigorous definition of ”Gaussian points,” including their properties,
roles, and relevance within your framework.

We thank the reviewer for raising this important point. We acknowledge that although the term “Gaus-
sian points” is frequently used throughout the manuscript, the original version lacked a clear and formal
definition, which may hinder readers’ understanding. To address this, we have added the following concise
and rigorous explanation in the revised manuscript:

Using the 3D Gaussian point cloud representation, we achieve continuous and smooth dense modeling.
A set of 3D Gaussian primitives {Pk}Nk=1 is defined in the scene, with each primitive Pk parameterized by
a mean position µk ∈ R3, a covariance matrix Σk ∈ R3×3, an opacity value αk ∈ [0, 1], and a color vector
ck ∈ R3. The density function of a single Gaussian is given by:

Pk(σ) = exp

(
−1

2
(σ − µk)

⊤Σ−1
k (σ − µk)

)
The spatial covariance matrix Σk defines the shape and orientation of the ellipsoidal support of the

Gaussian, allowing for anisotropic spatial distribution. It is factorized as:

Σk = RkSkS
⊤
k R⊤

k

where Rk ∈ R3×3 denotes the orientation matrix and Sk = diag(sk) ∈ R3×3 defines the scale along each
principal axis.
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These Gaussian primitives serve as the core building blocks of the scene representation in our SLAM
framework. They support differentiable rendering, enable continuous geometry reconstruction, and facilitate
efficient gradient-based optimization.

We have incorporated the above definitions along with illustrative figures into Section III.D of the
manuscript to help readers better understand the modeling approach, parameter structure, and functional
role of Gaussian points within the overall SLAM system. We thank the reviewer for this critical comment,
which helped us further improve the clarity and logical rigor of our paper.

Q9. Initial Keyframe Selection: Explain explicitly how the initial keyframe is chosen, including specific
criteria or initialization methods utilized.

We thank the reviewer for pointing out this critical issue. We acknowledge that the original manuscript
did not provide a sufficiently detailed explanation of the initial keyframe selection process, which may have
led to ambiguity. In the revised manuscript, we have added the following clarification regarding our keyframe
initialization strategy:

At the system initialization stage, a keyframe candidate is evaluated at fixed intervals, and one frame is
selected as the initial keyframe. This strategy is inspired by the fixed time window approach used in the
DSO system, which helps avoid robustness issues arising from insufficient visual parallax in the early stages
due to a lack of reliable features. Unlike traditional feature-based SLAM systems, DSO does not rely on
discrete keypoint detection and selection. Instead, it jointly optimizes camera poses using a set of sparse
points observed across multiple frames in a sliding window.

During initialization, we synthesize a representative image frame—selected based on favorable lighting and
structural characteristics—to serve as the first keyframe input, along with the corresponding initialization
of sparse point maps and camera pose. Although the sparse DSO back-end offers high computational
efficiency, it is susceptible to noise in low-texture or early initialization stages. To improve the robustness
of the initialization process, we incorporate dense depth maps to enhance image alignment in the front-end.
For each pixel in the current frame, if a sparse DSO depth estimate is available, it is used; otherwise, the
pixel is filled with a rendered depth value. This strategy enables the construction of an approximately dense
depth map, which is then used for direct image alignment between consecutive frames.

We have included the above details in Section III.C of the manuscript to improve the completeness and
clarity of our method description. We sincerely thank the reviewer for this valuable suggestion, which has
helped us refine the presentation of key methodological components in our system.

Q10. Discussion on limitation and generalizability is necessary for research work.

We sincerely thank the reviewer for pointing out this issue. We fully agree that a systematic discussion
of future research directions is essential for any scholarly work. In the revised manuscript, we have added
the following content to the conclusion section to elaborate on the applicability and potential extensions of
our proposed method:

Despite the aforementioned computational challenges, we believe DSOSplat still demonstrates promising
scalability and cross-scenario adaptability, particularly in two critical XR directions: multi-terminal immer-
sive interaction and multimodal perception fusion. Regarding the former, the Gaussian distribution-based
scene structure constructed by DSOSplat inherently possesses distributional continuity, making it naturally
suitable for partitioning into multiple optimizable regions with synchronized updates across devices. In col-
laborative XR applications, where AR devices typically share overlapping fields of view and spatial anchoring
relationships, our approach can leverage these relative pose constraints to achieve efficient and consistent
parallel mapping and spatial alignment. This significantly enhances spatial consistency and real-time perfor-
mance in multi-user immersive interactions. As for the latter, although the current system primarily relies
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on monocular input and DAV2-assisted depth estimation, its modular decoupling design allows for straight-
forward extension to versions incorporating multi-source perception data such as RGB-D, IMU, or LiDAR.
This upgrade would enable the system to maintain robust spatial awareness and target tracking capabilities
in complex XR environments. Moreover, core components like the depth estimation module (SC-AMVS) and
joint optimization mechanisms can be further extended to support adaptive fusion and dynamic updating of
multi-source observational data.

We have incorporated the above discussion into Section V of the manuscript under “Future Work.” We
thank the reviewer for the thoughtful suggestions and in-depth understanding of our work, which have helped
us strengthen the forward-looking aspects of the paper.
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